
Journal of Computational Physics 228 (2009) 6855–6881
Contents lists available at ScienceDirect

Journal of Computational Physics

journal homepage: www.elsevier .com/locate / jcp
An immersed interface method for Stokes flows with fixed/moving
interfaces and rigid boundaries

Zhijun Tan a, K.M. Lim b, B.C. Khoo a,b,*

a Singapore-MIT Alliance, 4 Engineering Drive 3, National University of Singapore, Singapore 117576, Singapore
b Department of Mechanical Engineering, National University of Singapore, 10 Kent Ridge Crescent, Singapore 119260, Singapore

a r t i c l e i n f o
Article history:
Received 16 November 2008
Received in revised form 23 April 2009
Accepted 10 June 2009
Available online 17 June 2009

Keywords:
Incompressible Stokes equations
Singular force
Immersed interface method
CG-Uzawa method
Deformable interface
Front tracking
Irregular domains
Rigid boundaries
0021-9991/$ - see front matter � 2009 Elsevier Inc
doi:10.1016/j.jcp.2009.06.005

* Corresponding author. Address: Department of
Singapore. Tel.: +65 65162889; fax: +65 67791459.

E-mail addresses: smatz@nus.edu.sg (Z. Tan), mp
a b s t r a c t

We present an immersed interface method for solving the incompressible steady Stokes
equations involving fixed/moving interfaces and rigid boundaries (irregular domains).
The fixed/moving interfaces and rigid boundaries are represented by a number of Lagrang-
ian control points. In order to enforce the prescribed velocity at the rigid boundaries, sin-
gular forces are applied on the fluid at these boundaries. The strength of singular forces at
the rigid boundary is determined by solving a small system of equations. For the deform-
able interfaces, the forces that the interface exerts on the fluid are calculated from the con-
figuration (position) of the deformed interface. The jumps in the pressure and the jumps in
the derivatives of both pressure and velocity are related to the forces at the fixed/moving
interfaces and rigid boundaries. These forces are interpolated using cubic splines and
applied to the fluid through the jump conditions. The positions of the deformable interfaces
are updated implicitly using a quasi-Newton method (BFGS) within each time step. In the
proposed method, the Stokes equations are discretized via the finite difference method on
a staggered Cartesian grid with the incorporation of jump contributions and solved by the
conjugate gradient Uzawa-type method. Numerical results demonstrate the accuracy and
ability of the proposed method to simulate incompressible Stokes flows with fixed/moving
interfaces on irregular domains.

� 2009 Elsevier Inc. All rights reserved.
1. Introduction

The low Reynolds number flow with interfaces in complex geometries is of interest in many engineering and physiolog-
ical applications, for example, multi-phase flows in various fluid components within fuel cell, biological cell trapping and
manipulation in microfluidic device, and droplet motion in confined geometries. Flow problems involving deformable inter-
faces and complex geometries often pose numerical difficulties and challenges in computational fluid dynamics. One of the
difficulties and challenges in these problems is that the fluid motion, the motion of the deformable interface and the inter-
action with the rigid boundaries must be computed simultaneously. This is necessary in order to account for the complex
interaction between the fluid, the interfaces and the rigid boundaries. The other difficulty is the accuracy of the fluid domain
computation, and this can be improved partially by implementing moving mesh techniques as in [10,47]. Fig. 1 shows an
illustration of such flow problems involving the rigid boundary and fixed/deformable interface embedded in a uniform Carte-
sian grid.
. All rights reserved.

Mechanical Engineering, National University of Singapore, 10 Kent Ridge Crescent, Singapore 119260,

elimkm@nus.edu.sg (K.M. Lim), mpekbc@nus.edu.sg (B.C. Khoo).

http://dx.doi.org/10.1016/j.jcp.2009.06.005
mailto:smatz@nus.edu.sg
mailto:mpelimkm@nus.edu.sg
mailto:mpekbc@nus.edu.sg
http://www.sciencedirect.com/science/journal/00219991
http://www.elsevier.com/locate/jcp

rb

ib

Rigid boundary

Interface

D

s

D

Fig. 1. A typical irregular domain D involving fluid interface, immersed in a simpler regular domain with a uniform Cartesian grid.

6856 Z. Tan et al. / Journal of Computational Physics 228 (2009) 6855–6881
For the treatment of interaction between the fluid motion and rigid boundaries, traditional methods for simulating the
flow with rigid boundaries include the body-fitted or unstructured grid methods. In this approach, the flow equations are
discretized on a curvilinear grid that conforms to the immersed boundary so that the boundary conditions can be imposed
easily. However, this method requires robust grid generation to account for the complexity of the immersed boundaries, and
the computational cost caused and memory requirements of these methods are generally high.

In comparison, solving the governing equations on a Cartesian grid has the advantages of retaining the simplicity of the
flow equations on the Cartesian coordinates and fast solvers can be used. One of the most successful Cartesian grid methods
is Peskin’s immersed boundary method [35,34], which provides an alternative approach to the treatment of the rigid bound-
aries. Despite the existing disadvantage that immersed boundary method is essentially first-order accurate for problems
with non-smooth but continuous solutions since it smears out sharp interface to a thickness of order of the meshwidth.
The method has been used in a wide variety of applications due to its ease of implementation, particularly in biofluid dynam-
ics problems where complex geometries and immersed elastic boundaries are present. Examples of applications include the
deformation of red blood cell in a shear flow [12], swimming of organisms [15], platelet aggregation [16,17,52], cochlear
dynamics [4], biofilm processes [11], wood pulp fiber dynamics [39]. A summary of the development of the immersed
boundary method can be found in [35].

Based on the same Cartesian grid framework, the immersed interface method (IIM), improves on the immersed boundary
method by not smearing out sharp interfaces and maintains second-order accuracy by incorporating the known jumps into
the finite difference scheme near the interface. The IIM was originally proposed by LeVeque and Li [27] for solving elliptic
equations, and was later extended to Stokes flow with elastic boundaries or surface tension [26]. In [26,31], the IIM was
based on the standard grid (not MAC grid) and employed the solution of three Poisson equations : one pressure Poisson
equation and two velocity Poisson equations. There appears to be some difficulties in the Dirichlet boundary condition treat-
ment and therefore bi-periodic boundary for the velocity and pressure are assumed. In addition, only regular domains are
considered. The method was developed further for the Navier–Stokes equations in [29,24,25,55] for problems with flexible
boundaries. In [43], Sethian and Shan presented a numerical algorithm for solving partial differential equations on irregular
domains with moving interfaces for application to the electrodeposition process. We refer the interested readers to the re-
cently published book by Li and Ito [28] and the references therein.

Still, the interest in IIM has led to several works for the simulation of fluid flows on irregular domains [6,30,40,32]. In
[6,30], the no-slip boundary conditions were imposed directly by determining the correct jump conditions for the stream-
function and vorticity. In [40], a Cartesian grid method is developed, with an underlying regular Cartesian grid employed to
solve the system using a streamfunction-vorticity formulation and discontinuities representing the embedded objects. The
no-penetration condition for the moving geometry is satisfied by superposing a homogenous solution to the Poisson’s equa-
tion for the streamfunction. The no-slip condition is satisfied by generating vorticity on the surfaces of the objects. Linnick
and Fasel [32] presented a high-order modified IIM for the 2D-unsteady-incompressible Navier–Stokes equations in stream
function-vorticity formulation. The method employs explicit fourth-order Runge–Kutta time integration scheme, fourth-or-
der compact finite-differences for computation of spatial derivatives, and a nine-point-fourth-order compact discretization
of the Poisson equation for computation of the stream function. Rutka [41] developed the explicit immersed interface meth-
od (EJIIM) for two-dimensional Stokes flows on irregular domain. The EJIIM introduces unknown jumps in the solution and
its derivatives up to second-order along the interface. The augmented system of equations using EJIIM in [41] is larger due to
the many unknowns are introduced as augmented variables, which increases the computational cost. In [7], a new bihar-
monic solver has been applied to solve the incompressible Stokes flow on an irregular domain. Taira and colonius [46] pres-
ent an immersed boundary projection method, where the boundary force is applied along the immersed boundary to satisfy

Z. Tan et al. / Journal of Computational Physics 228 (2009) 6855–6881 6857
the no-slip condition. In Cortez [9] developed a method of regularized Stokeslets based on the smoothing of force. Other re-
lated works on Stokes flows but completely different approaches include the boundary integral method (BIM) [5,37] and
boundary element method (BEM) [19,53]. Biros et al. [5] proposed the embedded boundary integral (EBI) method for Stokes
equations with distributed forces in complex geometries. The method uses an integral formulation to compute the jumps of
the velocity and its derivatives at the interface and expresses the jumps as a source term at some grid points close to the
interface. For a detailed presentation of the theory of the BIM for Stokes flows, we refer the interested readers to Pozrikidis
[37] and the references therein. It is worth mentioning that there are yet some similarities for solving immersed boundary or
domain boundary problem between the present IIM and the BIM. Compared with our approach, the BIM requires the Green
function and it needs to set-up the system of equations. As such, more sophisticated level of mathematics for integral for-
mulation and the development of accurate quadratures of integrals with singular kernels are (absolutely) required. From the
numerical perspective or implementation, the resulting integrals become nearly singular, which make them extremely dif-
ficult to evaluate accurately for points close to the boundary. If information is required at a large number of internal points in
a large expanse, the BIM would need highly accurate interpolation scheme. Also the BIM cannot be applied to solve for the
Navier–Stokes equations directly. When the BIM is used to solve non-linear equation, the expensive volume integration and
evaluation of interior values are involved. However, our method is deemed for more simpler to implement by only using the
simple finite difference scheme with the incorporation of correction terms. While the current IIM is of particular interest to
steady Stokes flows with interfaces and irregular domains in the present work, our method can be also applied potentially to
solve for other types of fluid flow (including the unsteady Stokes flow, steady Navier–Stokes flow and unsteady Navier–
Stokes flow) involving interfaces and irregular domains based on only a simple extension from the present Stokes solver
to the efficient generalized Stokes solver [14,38,21] in a fairly straightforward manner. For example, for the case of unsteady
Navier–Stokes equations, the generalized Stokes equations can be obtained via a semi-implicit temporal discretization using
the Crank–Nicolson scheme for the viscous terms and the Adams–Bashforth scheme for the convective terms at each time
step. As such, our approach is very flexible for different types of fluid flow problems. Another advantage to our approach is
the capability to treat the incompressible viscous flow with interfaces and irregular domains simultaneously as will be seen
from our numerical results, in this sense, which is very significant in providing a way to get a second-order IIM using a MAC
finite difference scheme for the broad area of fluid-structure interaction studies. It is noted that most works on flow prob-
lems with irregular domains are focused on Navier–Stokes flows based on streamfunction-vorticity formulation. However,
works on IIM for solving steady Stokes flow on irregular domain are still relatively very few. Moreover, all the above men-
tioned works and others found in the literature on solving the Stokes flow problems using the IIM are largely limited to treat-
ing either only interfaces on regular domains [26,31,22,23] or only irregular domains with no interfaces involved [7,41]. To
the best of our knowledge, there seems to be no other work reported by far on implementing the IIM for the incompressible
steady Stokes flow involving both (flexible) interfaces and rigid boundaries. The present implementation of the current ap-
proach for such flow problems is both new and non-trivial. It may be noted that even in the case of only regular domains
involved, the literature on IIM for the steady Stokes flows with Dirichlet boundary conditions appears to be also rather lim-
ited. Most work on IIM using uniform Cartesian grids for Stokes flow is based on solving three Poisson problems on a regular
non-staggered grid via implementing the periodic boundary conditions [26,31].

It should be mentioned that there are other Cartesian grid methods such as ghost-cell finite difference approach [3,49]
and cut-cell finite-volume approach [51,56,20]. In the ghost-cell approach, the ghost cells which are defined as cells interior
to the body and have at least one neighbor in the fluid are determined and the required ghost-cell values are extrapolated to
impose the boundary condition implicitly. In the cut-cell approach, cells in the Cartesian grid that are cut by the boundary
are identified and reshaped.

In this work, we present an IIM with second-order accuracy for solving the incompressible viscous Stokes flows in the
presence of both fixed/moving interfaces and irregular domains. The method combines the IIM with a front tracking repre-
sentation of the interface/boundary on a uniform Cartesian grid. In the proposed method, singular forces at the rigid bound-
ary are introduced to enforce the prescribed velocity condition at the rigid boundary and then determined by solving a small,
dense linear system of equations via the LU method. The advantage of such an approach of implicit-forcing for complex
boundary is that it imposes exactly the prescribed velocity condition at the rigid boundary and avoid the need for very small
time steps. The forces associated with the deformable interface are computed from the configuration (position) of the inter-
face and applied to the fluid through the jump conditions. Once the forces at the rigid boundaries are computed and the
forces at the fixed/moving interfaces are prescribed/computed, the jumps in pressure and the jumps in the derivatives of
velocity and pressure are related to these forces which are interpolated using cubic splines. For the deformable interface
problem on irregular domains, the positions of the deformable interfaces are updated implicitly within each time step.
The Stokes equations with primitive variables are discretized on a staggered Cartesian grid by a second-order MAC finite dif-
ference scheme and solved by the conjugate gradient Uzawa-type method. The jumps in the solution and its derivatives are
incorporated into the finite difference discretization to obtain a sharp interface resolution. Fast solvers from the FISHPACK
software library [1] have been used to solve the resulting discrete systems of Poisson equations. The numerical results show
that the overall scheme is second-order accurate for the velocity and nearly second-order accurate for the pressure. The
capability of the proposed method to simulate the incompressible steady Stokes flow with fixed/moving interfaces and irreg-
ular domains is demonstrated by testing a number of problems, including rotational flow on irregular domain, the relaxation
of an elastic membrane placed on irregular domain, deformation of a drop between two concentrically rotating cylinders, an
elastic membrane in a contraction flow and the motion of an elastic membrane in a groove.

6858 Z. Tan et al. / Journal of Computational Physics 228 (2009) 6855–6881
This paper is organized as follows. In Section 2, the model of incompressible Stokes flows with interfaces on irregular do-
mains is described. In Section 3, we present the jump relations along the immersed interface via the singular force f and the
jumps in the velocity and pressure and their derivatives. The numerical algorithm and numerical implementation are pre-
sented in Sections 4 and 5, respectively. In Section 6, several numerical examples are presented. Some concluding remarks
will be made in Section 7.

2. Governing equations

This papers concerns the viscous incompressible Stokes flows involving fluid interfaces and rigid boundaries in 2D. With-
out loss of generality, we assume below that only a fluid fixed/moving interface Cib and a rigid boundary Crb are involved,
and extension to involve multiple fluid interfaces and multiple rigid boundaries is straightforward. In a two-dimensional
computational domain X ¼ ½a; b� � ½c; d�, we consider the steady Stokes equations formulated in the velocity–pressure vari-
ables, written as
rp ¼ lDuþ Fðx; tÞ þ gðx; tÞ; x 2 X; ð2:1Þ

r � u ¼ 0; x 2 X; ð2:2Þ
with boundary conditions
uj@X ¼ ub; uj@D ¼ up; ð2:3Þ
where u ¼ ðu;vÞT is the fluid velocity, l is the fluid viscosity, x ¼ ðx; yÞ is the Cartesian coordinate variable, gðx; tÞ ¼ ðg1; g2Þ
T

is an external force which can be a function of time t;up is the prescribed velocity at the rigid boundary. The effects of the
interface and rigid boundary immersed in the fluid result in the total singular forces F which are typically modeled as a Dirac
delta function along the interface and boundary as follows:
Fðx; tÞ ¼
Z

Cib

f ibðs; tÞdðx� Xibðs; tÞÞdsþ
Z

Crb

frbðs; tÞdðx� Xrbðs; tÞÞds: ð2:4Þ
Here, Xibðs; tÞ and Xrbðs; tÞ are the arc-length parametrization of the fluid interface Cib and rigid boundary Crb, respectively, s is
the arc-length, f ib ¼ f ib

1 ; f
ib
2

� �T
and frb ¼ f rb

1 ; f
rb
2

� �T
are the corresponding force densities along the fluid interface and rigid

boundary, respectively, and dð�Þ is the Dirac delta function defined in the distribution sense. Eq. (2.2) together with the
Dirichlet condition Eq. (2.3) leads to the compatibility condition that ub must satisfy
Z

@X
ub � ndS ¼ 0; ð2:5Þ
where n is the outer unit normal to @X. The motion of the deformable interface satisfies
@Xibðs; tÞ
@t

¼ uðXibðs; tÞ; tÞ ¼
Z

X
uðx; tÞdðx� Xibðs; tÞÞdx: ð2:6Þ
We shall consider a moving interface problem which involves an elastic membrane, where the force strength f ib exerted by
elastic membrane on the fluid is given by
f ibðs; tÞ ¼ @

@s
ðTðs; tÞsðs; tÞÞ; ð2:7Þ
with the tension Tðs; tÞ given by
Tðs; tÞ ¼ T0
@Xibðs; tÞ
@s0

�����
������ 1

 !
: ð2:8Þ
Here, the tension coefficient T0 is the stiffness constant which describes the elastic property of the membrane and s and s0

are the arc-lengths measured along the current and undeformed configuration of the membrane. The vector tangential to C
is given by sðs; tÞ, where
sðs; tÞ ¼ @Xib

@s

,
@Xib

@s

�����
�����:
Thus, the force density can be computed directly from the location Xib of the deformable interface Cib. An equivalent form of
Eq. (2.7) is
f ibðs; tÞ ¼ ð@T=@sÞsðs; tÞ þ Tjn; ð2:9Þ
where j is the curvature, defined by @s=@s ¼ jn. If we assume a stressed initial configuration and T depends linearly on
@Xibðs;tÞ
@s0

��� ���, then we obtain the surface tension model from (2.7) as follows:

Z. Tan et al. / Journal of Computational Physics 228 (2009) 6855–6881 6859
fðs; tÞ ¼ c
@2

@s2 Xibðs; tÞ; ð2:10Þ
where c is the surface tension coefficient. This surface tension model is used in the numerical simulation of the Example 6.4
in this paper.

Throughout this paper, we shall assume that the fluid viscosity l is constant over the whole domain. We refer the readers
to Fig. 1 for an illustration of the problem.

3. Jump conditions across the interface/boundary

In order to implement the IIM, we need to know the jump conditions for the velocity and pressure and their spatial deriv-
atives. Let n ¼ ðn1;n2Þ and s ¼ ðs1; s2Þ be the unit outward normal and tangential vectors to the interface/boundary, respec-
tively. The jump of an arbitrary function qðXÞ across the interface/boundary at X is denoted by
½q� ¼ lim
�!0þ

qðXþ �nÞ � lim
�!0þ

qðX� �nÞ: ð3:1Þ
Denoting ðn;gÞ the local coordinates associated with the directions of n and s, respectively, we have the jump conditions
for the velocity and pressure across the interface/boundary related to normal force and tangential force and express them in
the local Cartesian coordinate as follows (see [29,24] for details):
½u� ¼ 0; ½ug� ¼ 0; ½un� ¼ �
1
l

f̂ 2s; ½ugg� ¼
1
l

jf̂ 2s; ð3:2Þ

½ung� ¼ �
1
l
@ f̂ 2

@g
s� 1

ljf̂ 2n; ½unn� ¼ �½ugg� þ
1
l ½pn�nþ

1
l ½pg�s�

1
l ½g�; ð3:3Þ

½p� ¼ f̂ 1; ½pn� ¼ ½g� � nþ
@ f̂ 2

@g
; ½pg� ¼

@ f̂ 1

@g
; ð3:4Þ

½pgg� ¼
@2 f̂ 1

@g2 � j½pn�; ½png� ¼
@ð½g� � nÞ

@g
þ @

2 f̂ 2

@g2 þ j½pg�; ½pnn� ¼ ½r � g� � ½pgg�: ð3:5Þ
Here, f̂ 1 and f̂ 2 are the components of the force density in the normal and tangential directions of the interface/boundary
such that f̂ ¼ ðf̂ 1; f̂ 2Þ, and j is the signed valued of the curvature of the interface/boundary. In this work, we shall incorporate
the jump conditions of second-order spatial derivatives for the pressure into the finite difference scheme; this can be com-
pared to the usual jump condition of first-order spatial derivatives for the pressure in the literature [31,29,26,24]. In order to
be numerically useful, those jump conditions for the first and second derivatives of the velocity and pressure in (3.2)–(3.5) in
the local coordinate are transformed into the jump relations in the Cartesian coordinate by a simple coordinate transforma-
tion [29]. As such, we have
½qx� ¼ ½qn�n1 þ ½qg�s1; ½qy� ¼ ½qn�n2 þ ½qg�s2; ð3:6Þ

½qxx� ¼ ½qnn�n2
1 þ 2½qng�n1s1 þ ½qgg�s2

1; ð3:7Þ

½qyy� ¼ ½qnn�n2
2 þ 2½qng�n2s2 þ ½qgg�s2

2; q ¼ u;p: ð3:8Þ
4. Numerical algorithm

Our numerical algorithm is based on the conjugate gradient Uzawa-type algorithm for the discretization of the Stokes
equations with special treatment at the grid points near the interface. The spatial discretization is carried out on a standard
marker-and-cell (MAC) staggered grid similar to that found in Tau [48]. We use a uniform MAC grid with the spacing
h ¼ Dx ¼ Dy in the computation. With this MAC grid, the pressure is defined at p-mesh points
ðxiþ1=2; yjþ1=2Þ ¼ ðaþ ði� 1=2Þh; bþ ðj� 1=2ÞhÞ, where i 2 f1;2; . . . ;Nxg and j 2 f1;2; . . . ;Nyg. The velocity components u and
v are defined at u-mesh points ðxi; yjþ1=2Þ ¼ ðaþ ði� 1Þh; bþ ðj� 1=2ÞhÞ and v-mesh points ðxiþ1=2; yjÞ ¼ ðaþ ði� 1=2Þh;
bþ ðj� 1ÞhÞ, respectively. The arrangement of the pressure and velocity components is shown as in Fig. 2. An advantage
of such a MAC grid is that there is no need for pressure boundary conditions while dealing with the derivative of pressure
since the pressure nodes are at the cell center.

4.1. Stokes solver with correction terms

Discretization of Eqs. (2.1)–(2.3) by second-order MAC finite difference scheme leads to the following linear system

,i jp
,i ju

,i jv

1,i jp
1,i ju

1k

k

1k , 1i jv

u
v
p

-mesh point

-mesh point

-mesh point

control point

Fig. 2. A diagram of the interface cutting through a staggered grid with a uniform mesh width h, where the velocity component u is at the left-right face of
the cell and v is at the top-bottom face, and the pressure is at the cell center.

6860 Z. Tan et al. / Journal of Computational Physics 228 (2009) 6855–6881
GMACp ¼ lDhuþ gðxÞ þ C1; ð4:1Þ

DMACu ¼ C2; uj@X ¼ ub: ð4:2Þ
The above discretization of the Stokes equations at those grid points near the interface and rigid boundary has been mod-
ified to account for the jump conditions across the fixed/moving interface and rigid boundary due to the presence of singular
forces at the fixed/moving interface and rigid boundary. The coefficients C1 and C2 are the spatial correction terms added to
the finite difference equations at the points near the interface and rigid boundary to improve the accuracy of the local finite
difference approximations and will be evaluated later. In order to satisfy the discrete compatibility condition corresponding
to (2.5) to thereby ensure the solvability of system Eqs. (4.1) and (4.2), we employed a solvable perturbed system with sim-
ilar approach as in [26] via perturbing C2 to C2 � bC2 on the right hand of Eq. (4.2). Here bC2 is the mean value of the correction
term C2. We refer the readers to [26] for details. In the above expressions, Dh is the standard central difference operator, and
GMAC and DMAC are the MAC gradient and divergence operators, respectively. These operators are defined as
Dhui;j ¼
uiþ1;j þ ui�1;j þ ui;jþ1 þ ui;j�1 � 4uij

h2 ; ðGMACpÞi;j ¼
piþ1;j � pi;j

h
;
pi;jþ1 � pi;j

h

� �
;

ðDMACuÞi;j ¼
uiþ1;j � ui;j

h
þ v i;jþ1 � v i;j

h
: ð4:3Þ
Denoting G1 ¼ gðxÞ þ C1 and G2 ¼ C2 � bC2 as the right-hand equivalent of Eqs. (4.1) and (4.2), the linear system (4.1) and
(4.2) can be written in the matrix–vector form as
�lDh GMAC

DMAC 0

 !
u
p

� �
¼

G1

G2

� �
: ð4:4Þ
Currently, there exists some fast solvers to solve system (4.4), for example, the PCG method [13,36], the PMINRES method
[13,36], the FFT-based method [8], multigrid method [33,13,36], and so on. In this work, we shall employ the CG-Uzawa
method. The Uzawa procedure for problems with interfaces/boundaries is analogous to the fast iterative method presented
in [48,44] and consists of two steps:

Step 1 : Solve Mp ¼ lG2 þ DMACD�1
h G1 to obtain the pressure p.

Step 2 : Solve lDhu ¼ G1 � GMACp to obtain the velocity u.

Here, theM¼ DMACD�1
h GMAC is the Schur complement of system (4.4). In Step 1, the system is solved by the conjugate gra-

dient method (CG) in this work. In the CG method, each matrix–vector product ofMp requires one application of D�1
h which

corresponds to solving one Poisson equation, and which can be solved by several efficient methods, for example, ICCG meth-
od, the FFT method and multigrid method. In the present work, we can take advantage of the fast solvers from FISHPACK [1]
to solve these Poisson equations. Once the pressure is obtained, the velocity field u can be again solved by the fast solvers
from FISHPACK [1] via Step 2. The computational complexity for the fast Poisson solver from FISHPACK isO(M log(M)), where
M is the number of interior grid points of the embedded domain. It turns out that for some properly chosen operators the
condition number of the Schur complement matrix M is bounded independently of the mesh size as discussed in
[48,44,14], so the CG algorithm converges rapidly. The number of iterations in the CG method is reasonably small and are
independent of the mesh size for the present numerical examples in Section 6. As such, the present Stokes solver is fast
and efficient as discussed in [48,44].

Z. Tan et al. / Journal of Computational Physics 228 (2009) 6855–6881 6861
4.2. Calculation of correction terms

One of the basic components for determining the correction terms is the generalized finite difference formulas. We shall
briefly review the generalized finite difference formulas in this section. Here, we show four particular generalized finite dif-
ference formulas for demonstration. Assume that the interface/boundary cuts a grid line between two grid points at
x ¼ a; xi 6 a < xiþ1; xi 2 X�; xiþ1 2 Xþ, where X� and Xþ denote the region inside and outside the interface, respectively. Then,
the following approximations hold for a piecewise twice differentiable function wðxÞ:
wxðxiÞ ¼
wiþ1 �wi�1

2h
� 1

2h

X2

m¼0

ðhþÞm

m!
½wðmÞ�a þ Oðh2Þ; ð4:5aÞ

wxðxiþ1Þ ¼
wiþ2 �wi

2h
� 1

2h

X2

m¼0

ðh�Þm

m!
½wðmÞ� þ Oðh2Þ; ð4:5bÞ

wxxðxiÞ ¼
wiþ1 � 2wi þwi�1

h2 � 1

h2

X2

m¼0

ðhþÞm

m!
½wðmÞ�a þ OðhÞ; ð4:5cÞ

wxxðxiþ1Þ ¼
wiþ2 � 2wiþ1 þwi

h2 þ 1

h2

X2

m¼0

ðh�Þm

m!
½wðmÞ� þ OðhÞ; ð4:5dÞ
where wðmÞ denotes the mth derivative of w;wi ¼ wðxiÞ;hþ ¼ xiþ1 � a;h� ¼ xi � a and h is the mesh width in x-direction. The
jump in w and its derivatives are defined as
½wðmÞ�a ¼ lim
x!a;x2Xþ

wðmÞðxÞ � lim
x!a;x2X�

wðmÞðxÞ; ð4:6Þ
in short, ½�� ¼ ½��a, and wð0Þ ¼ w. Note that if the interface/boundary cuts a grid line between two grid points xi 2 Xþ and
xiþ1 2 X�, these expressions need to be modified by changing the sign of the second terms on the respective right-hand sides.
Expressions involving two or more interface/boundary crossings could also be derived, we refer the readers to [54] for de-
tails. From Eqs. (4.5a) and (4.5c) the correction terms for wxðxiÞ and wxxðxiÞ can be defined as
CfwxðxiÞg ¼ �
1

2h

X2

m¼0

ðhþÞm

m!
½wðmÞ�; ð4:7Þ

CfwxxðxiÞg ¼ �
1

h2

X2

m¼0

ðhþÞm

m!
½wðmÞ�: ð4:8Þ
Thus, the finite difference approximation near the interface/boundary, for the derivatives of a function q, includes the
standard central difference terms plus the additional correction terms. Accordingly, the correction terms C1 and C2 are eval-
uated as follows:
C1 ¼ lðCfDugÞ � Cfrpg; ð4:9aÞ

C2 ¼ �Cfr � ug: ð4:9bÞ
We note that all the correction terms are evaluated at least to first-order accuracy, i.e., the local truncation error of the pres-
ent scheme is Oðh2Þ at an regular grid point away from the interface/boundary, while OðhÞ at an irregular grid point near the
interface/boundary. Despite the first-order truncation errors at those irregular points, the overall accuracy is still second-or-
der since the number of irregular grid points is much less than the total number of grid points as also shown by other works
[2,28]. To evaluate the correction term CfDug of (4.9a) at an irregular point ði; jÞ as depicted in Fig. 3, we need to compute ½ux�
and ½uxx� at the intersection point a of the interface/boundary with the grid lines, and ½uy� and ½uyy� at b of the interface/
boundary with the grid lines. The correction term CfDug is calculated as follows:
CfDugi;j ¼ �
½u� þ hþ½ux�a þ

ðhþÞ2
2 ½uxx�a

h2 �
½u� þ k�½uy�b þ

ðk�Þ2
2 ½uyy�b

h2 ;
where hþ ¼ xiþ1 � xa; k
� ¼ yj�1 � yb, and xa and yb are the x-coordinate of the intersection point a and the y-coordinate of the

intersection point b as shown in Fig. 3, respectively. Du is approximated at the irregular point ði; jÞ as
Duði; jÞ ¼ Dhui;j þ CfDugi;j þ OðhÞ:

),(ji

Irregular grid point
Regular grid point

Fig. 3. Interface/boundary and mesh geometry near the irregular grid point ði; jÞ.

6862 Z. Tan et al. / Journal of Computational Physics 228 (2009) 6855–6881
Similarly, we can compute for the other correction terms in (4.9a) and (4.9b) as follows
Cfrpgi;j ¼ �
½p� þ hþ½px�a þ

ðhþÞ2
2 ½pxx�a

h
;
½p� þ k�½py�b þ

ðk�Þ2
2 ½pyy�b

h

 !
;

Cfr � ugi;j ¼ �
½u� þ hþ½ux�a þ

ðhþÞ2
2 ½uxx�a

h
þ
½v � þ k�½vy�b þ

ðk�Þ2
2 ½vyy�b

h
:

Note above intersection points a and b at which the jumps for u;v and p correspond to those of the interface/boundary with
the grid lines for u-mesh, v-mesh and p-mesh.

4.3. Imposing the rigid boundary condition

In the present work, the rigid boundary is immersed in a rectangular computational domain. The prescribed velocity con-
dition at the rigid boundary is imposed by applying an appropriate singular force at the control points representing the rigid
boundary. Assuming that the singular force frb at the rigid boundary is known, the velocity field u at all the grid points can be
computed via the CG-Uzawa method as discussed in Section 4.1. The velocity at the control points of the rigid boundary,
Urb;frb

k (since it depends on frb and can be taken as a function of frb), can be interpolated from the velocity u at the grid points.
Here, we can write
Urb;frb

k ¼ UðXrb
k Þ ¼ BðuÞ; ð4:10Þ
where B is the modified bilinear interpolation operator with jump conditions to guarantee second-order accuracy when the
derivatives of the velocity are discontinuous and its explicit form is shown in [24]. Since the relationships between the sin-
gular forces and the jumps in the solution or its derivatives are linear and all the discreted equations are linear, therefore we
simply write the velocity at the control points of the rigid boundary as,
Urb;frb

k ¼ Urb;0
k þ Afrb

; ð4:11Þ
where Urb;0
k corresponds to the velocity at the control points of the rigid boundary obtained by solving Eqs. (2.1) and (2.2)

with frb ¼ 0. A is a 2Nb � 2Nb matrix, where Nb is the number of control points at the rigid boundary. The vector Afrb is
the velocity at the control points of the rigid boundary obtained by solving the following equations:
rhpfrb ¼ lDhufrb þ C1; ð4:12Þ

rh � ufrb ¼ C2; ufrb j@X ¼ 0; ð4:13Þ

Afrb ¼ Bðufrb Þ; ð4:14Þ
with frb being the singular force at the rigid boundary. Here, C1 and C2 are the correction terms which only take into account
the effect of the singular force frb at the rigid boundary. From Eq. (4.11), with the prescribed velocity Urb

p at the rigid bound-
ary, the singular force frb at the rigid boundary is determined by solving
Afrb ¼ Urb
p � Urb;0

k : ð4:15Þ

Z. Tan et al. / Journal of Computational Physics 228 (2009) 6855–6881 6863
Eq. (4.15) can be solved via using the GMRES method [42]. Each GMRES iteration requires one vector–matrix product of Afrb

with a known frb. Note that the matrix A depends on the location of the rigid boundary. In the present work, the rigid bound-
ary is static, therefore, we can form the coefficient matrix A explicitly and solve Eq. (4.15) directly. In order to compute the
coefficients of A, we solve Eqs. (4.12)–(4.14) for 2Nb times, i.e. once for each column. Each time, the singular force frb is set to
zero except for the entry corresponding to the column we want to calculate, which is set to one. Once the matrix A has been
calculated, the terms on the right hand side, Urb

p � Urb;0
k , can be computed. The resulting small system of Eq. (4.15) is then

solved for frb via back substitution. Finally, we solve Eqs. (4.1) and (4.2) to obtain u and p. In actual computation, we use
the LU method to solve the system of Eq. (4.15) for flows involving moving interfaces and irregular domains.

4.4. Advancing the deformable interface

For the deformable interface problem, the location of the interface Xib is updated based on the surrounding fluid velocity.
To overcome the strict limit of very small time steps with explicit method and increase the stability of the current method,
the updated location of the deformable interface is advanced in time in an implicit manner, according to
Xib;nþ1 ¼ Xib;n þ 1
2

Dt unðXib;nÞ þ unþ1ðXib;nþ1Þ
� �

: ð4:16Þ
The new positions of the control points Xib;nþ1 are determined by solving a nonlinear system of equations
QðXib;nþ1Þ ¼ 0; ð4:17Þ
where
QðXÞ ¼ X� Xib;n � 1
2

Dt unðXib;nÞ þ unþ1ðXÞ
� �

:

The BFGS method [45] which is a quasi-Newton method is employed to solve the nonlinear system of Eq. (4.16) iteratively
to calculate the location of the deformable interface. For more details on the IIM for deformable interfaces, see [26,24,25]. In
each iteration of the BFGS method, we need to solve the system of Eq. (4.15) for the singular force frb to impose the pre-
scribed velocity at the rigid boundary thereby ensuring the boundary condition for the velocity is exactly satisfied. This is
necessary because the velocity field and pressure field are updated at every iterations of the BFGS method. In the numerical
tests, it takes only a few iterations for the BFGS method.

5. Numerical implementation

In this section, we describe a basic implementation of our algorithm for the steady Stokes equations with fixed/moving
interfaces and rigid boundaries. To start our procedure we compute the coefficient matrix as mentioned in the previous sec-
tion. We then factorize the coefficient matrix using LU decomposition and store the L and U matrices. First, given the singular
force f ib at the fixed interface, our algorithm for finding u, p and the singular force frb at the rigid boundary to satisfy the
prescribed velocity condition at the rigid boundary can be summarized as follows:

Algorithm 1 (IIM with fixed interfaces on irregular domains).

Step 1: Compute the right hand side of (4.15) by calculating Urb
p � Urb;0

k .
� Set frb ¼ 0, and solve (4.1) and (4.2) for the velocity at all the grid points, with incorporation of the correction

terms which only take into account the contribution of f ib at the fixed interface.
� Interpolate the velocity at the control points Urb;0

k as in (4.10).
� Compute the right hand side vector b ¼ Urb

p � Urb;0
k .

Step 2: Compute the singular force frb by solving (4.15) using the LU method or the GMRES method.
Step 3: Compute u and p using the CG-Uzawa method with the incorporation of correction terms which take into account

the contributions of both f ib at the fixed interface and frb at the rigid boundary.

Next we turn our attention to the implementation of the immersed interface method for the incompressible Stokes equa-
tions with moving interfaces and rigid boundaries. Given the location of the control points Xn, the velocity un and pressure
pn, the algorithm for computing the velocity unþ1 that satisfies the prescribed velocity condition at the rigid boundary, pres-
sure pnþ1 and the location of the control points Xnþ1 can be described as follows:

Algorithm 2 (IIM with moving interfaces on irregular domains).

Step 1: Set k :¼ 0, make an initial guess for Xib;nþ1, i.e. Xib;ð0Þ as Xib;ð0Þ ¼ 2Xib;n � Xib;n�1 and set the inverse Jacobian
Bnþ1

0 ¼ Bn
k . At the first time step, the inverse Jacobian is initialized to the identity matrix I.

6864 Z. Tan et al. / Journal of Computational Physics 228 (2009) 6855–6881
Step 2:
� Compute the force strength f ib at the deformable interface using expression (2.7).
� Compute the force strengths frb at the rigid boundary to impose the prescribed velocity condition at the rigid

boundary, i.e., calculate the right hand side vector of (4.15), and then solve for the small system of Eq. (4.15) to
obtain the singular force frb at the rigid boundary as in Algorithm 1.

Step 3:
� Employ the CG-Uzawa method as described in Section 4.1 to obtain the velocity field unþ1 and pressure field pnþ1.

This step involves computing the appropriate correction terms for the spatial derivatives as described in Section
4.2.

� Compute the velocity unþ1ðXib;ðkÞÞ at control points Xib;ðkÞ, which is interpolated from the velocity unþ1 at the sur-
rounding grid points.

Step 4:
� Evaluate QðXib;ðkÞÞ.
� If kQ ðkÞk < e then Xib;nþ1 ¼ Xib;ðkÞ and stop the iteration. Otherwise, update Xib;ðkþ1Þ and the inverse Jacobian matrix

Bnþ1
kþ1 [45]. Set k ¼ kþ 1 and go to Step 2.
6. Numerical examples

In this section, several numerical examples are carried out to demonstrate the capabilities of our proposed algorithm in
this work. All the simulations are done on a Laptop PC with 1.6 GHz.

Example 6.1. In the first example, we start our numerical tests by checking the accuracy of the algorithm. In this example,
there is a provided exact solution [29] and the exact velocity and pressure are given by
u ¼
y
4 ; x2 þ y2 < 1;
y
4 ðx2 þ y2Þ; x2 þ y2 P 1;

(
ð6:1Þ

v ¼
� x

4 ð1� x2Þ; x2 þ y2 < 1;

� xy2

4 ; x2 þ y2 P 1;

(
ð6:2Þ

~p ¼ � 3
4 x3 þ 3

8 x
� �

y; x2 þ y2 < 1;
0; x2 þ y2 P 1;

(
ð6:3Þ

p ¼ ~p�meanð~pÞ; ð6:4Þ
where meanð~pÞ is the average of ~p. The external force term g ¼ ðg1; g2Þ
T is derived directly from the exact solution by satis-

fying the Stokes equation as follows
g1 ¼
� 9

4 x2 þ 3
8

� �
y; x2 þ y2 < 1;

�2ly; x2 þ y2 P 1;

(
ð6:5Þ

g2 ¼
� 3

4 x3 þ 3
8 x� 3l

2 x; x2 þ y2 < 1;
l
2 x; x2 þ y2 P 1:

(
ð6:6Þ
Thus, external force term g has a finite jump across the interface. And the singular force terms in the normal direction and
tangential direction are
f̂ 1 ¼
3
4

cos3 h� 3
8

cos h

� �
sin h; ð6:7Þ
f̂ 2 ¼
1
2
l ð6:8Þ
calculated from (3.3) and (3.5), respectively, where h is the angle between the x-axis and the normal direction at the point of
the interface. It is easy to verify that the velocity satisfies the incompressibility constraint, and it is continuous but has a fi-
nite jump in the normal derivative across the interface [29].

Here, we use the circular geometry with the radius Rs ¼ 2. The prescribed velocity at the boundary of the circular geom-
etry (i.e., rigid boundary) is found by exact solution. The simulation is performed with a 64 � 64 grid and l ¼ 0:1. The outer
rigid boundary and inner interface are presented by 64 control points and 40 control points, respectively. In Fig. 4, we pres-
ent the plot for the computed u-component velocity. We perform the grid refinement analysis to determine the order of con-
vergence of the algorithm. The order of accuracy is estimated as

−2

−1

0

1

2

−2

−1

0

1

2
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

xy

u

Fig. 4. For Example 6.1. The x-component of velocity field u.

Table 1
Grid refi

N

32
64
128
256

Z. Tan et al. / Journal of Computational Physics 228 (2009) 6855–6881 6865
order ¼ logðkEuðNÞk1=kEuð2NÞk1
log 2

: ð6:9Þ
Here, kEuðNÞk1 is the maximum error
kEuðNÞk1 ¼ max
i;j
jUij � uðxi; yjÞj; ð6:10Þ
where uðxi; xjÞ is the exact solution at ðxi; xjÞ and Uij is the numerical solution.
The result of the convergence rate analysis is shown in Table 1. From Table 1, one can easily see that the velocity is sec-

ond-order accurate, and the pressure is nearly second-order accurate. The sixth column shows the number of average CG
iterations, which indicates that a limited number of iterations are needed and the number of iterations is almost indepen-
dent of the mesh size. The CPU time in seconds is listed in the last column, which shows that the present method is efficient.
The corresponding condition number of matrixM in Eqs. (4.1) and (4.2) with homogeneous Dirichlet boundary conditions is
9.08 (N = 512).

Example 6.2 (Rotational flow on irregular domain). In the second example, we consider the rotational flow problem involving
a fixed interface (where forces are prescribed) and rigid boundary (where velocity is prescribed). In this example, we use a
64 � 64 grid on a computation domain of [�1,1] � [�1,1] and set l ¼ 0:1 unless it is stated otherwise.

We first consider the external irregular domain as in Fig. 5(a). In this case, the rigid boundary @D is a circle with radius
Rs ¼ 0:7; the involved fixed interface is also a circle but with radius r = 0.3, which is located at the center of the circular do-
main. We set 48 and 40 control points on the rigid boundary and inner interface in the simulation, respectively. Along the
inner interface, the normal and tangential forces are f1 ¼ 0 and f2 ¼ �10l, respectively. At the rigid boundary, we first pre-
scribe the rigid boundary to rotate with a constant angular velocity x ¼ 1. The x-component of the velocity field u and veloc-
ity field u are shown in Fig. 6(a) and (b), respectively. The steady-state motion is a anti-clockwise rotation along the outer
rigid boundary and a clockwise rotation along the inner interface. Next we set the no-slip boundary conditions at the rigid
boundary, i.e., x ¼ 0. The steady solution is shown in Fig. 7, which corresponds to a clockwise rigid body motion inside the
interface. Fig. 7(a) and (b) show the x-component of the velocity field u and velocity field u, respectively. From these figures,
we can observe that the velocity is continuous but not smooth across the interface due to the singular forces at the interface
as expected.
nement analysis for Example 6.1.

kEuk1 Order kEpk1 Order Niter CPU (s)

8.8190E�03 – 4.6174E�02 – 11 0.66
2.0429E�03 2.11 9.3114E�03 2.31 12 1.77
5.3611E�04 1.93 2.9261E�03 1.67 13 6.93
1.2768E�04 2.07 8.5203E�04 1.78 13 33.23

ib

r

1f

x

y

sR

2f

D D
ib

D
x

y

1f

2f r

sR

D

D

x

D

1f

ib

2f
r

D

D sR

y

Fig. 5. The domain of the simulation and the geometry of rotational flow.

−0.6
−0.4

−0.2
0

0.2
0.4

0.6

−0.6
−0.4

−0.2
0

0.2
0.4

0.6

−1

−0.5

0

0.5

1

xy

u

−0.6 −0.4 −0.2 0 0.2 0.4 0.6

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

Velocity field

x

y

Fig. 6. For Example 6.2. (a) The x-component of the velocity field u, and (b) velocity field u with x ¼ 1;l ¼ 0:1; f 1 ¼ 0 and f2 ¼ �10l.

6866 Z. Tan et al. / Journal of Computational Physics 228 (2009) 6855–6881
In the second case, we consider the internal irregular domain as in Fig. 5(b). The rigid boundary is inside the interface as
shown in Fig. 5(b); the rigid boundary @D is a circle with radius Rs ¼ 0:3 while the involved fixed interface is a circle with
radius r ¼ 0:7, located at the center of the square domain. We use 40 and 48 control points to represent the rigid boundary
and outer interface, respectively. Along the outer interface, the normal and tangential forces are f1 ¼ 0 and f2 ¼ �5l, respec-
tively. At the rigid boundary, we first set the no-slip boundary conditions. Fig. 8(a) and (b) show the x-component of the
velocity field u and velocity field, respectively. The motion of the steady solution is a simple clockwise rotation along the
outer interface. Next we prescribe the inner rigid boundary to rotate with a angular velocity x ¼ 2. The x-component of
the velocity field u and velocity field are shown in Fig. 9(a) and (b), respectively. The motion of the steady solution is a clock-
wise rotation along the outer interface and an anti-wise rotation along the inner boundary.

In the third case that the rigid boundary is outside the interface as shown in Fig. 5 (c), the rigid boundary @D is a circle
with radius Rs ¼ 0:3 and its center at (0.4, �0.4); while the involved fixed interface is a circle with radius r ¼ 0:5, which is
located at (-0.3, 0.3). We use 40 and 48 control points to represent the rigid boundary and interface, respectively. Along the
interface, the normal and tangential forces are f1 ¼ 0 and f2 ¼ �5l, respectively. At the rigid boundary, we set the no-slip
boundary conditions. Fig. 10(a) and (b) show the x-component of the velocity u and velocity field, respectively. The motion
of the steady solution is a simple clockwise rotation along the interface. Again we can observe from these figures that the
velocity is continuous but not smooth across the interface as expected due to the singular forces at the interface. Finally,
we carry out a grid refinement analysis for Fig. 5(a) with x ¼ 1, using a referenced grid of 512 � 512, to determine the order
of the convergence of the algorithm. The results in Table 2 indicate that the velocity is second-order accurate and the pres-
sure is nearly second-order accurate. We can also see from this table that the present method for this example requires a

−0.6
−0.4

−0.2
0

0.2
0.4

0.6

−0.6
−0.4

−0.2
0

0.2
0.4

0.6

−1

−0.5

0

0.5

1

xy

u

−0.6 −0.4 −0.2 0 0.2 0.4 0.6

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

Velocity field

x

y

Fig. 7. For Example 6.2. (a) The x-component of the velocity field u, and (b) velocity field u with x ¼ 0;l ¼ 0:1; f1 ¼ 0 and f2 ¼ �10l.

−1

−0.5

0

0.5

1

−1
−0.5

0
0.5

1

−1

−0.5

0

0.5

1

x

y

u

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
Velocity field

x

y

Fig. 8. For Example 6.2. (a) The x-component of velocity field u, and (b) the velocity field u with x ¼ 0 and l ¼ 0:1; f1 ¼ 0 and f2 ¼ �5l.

Z. Tan et al. / Journal of Computational Physics 228 (2009) 6855–6881 6867
small number of iterations and is almost independent of mesh size, and therefore it is very fast in terms of the CPU time.
Again the corresponding condition number of matrix M in Eqs. (4.1) and (4.2) is 9.08 with no-slip boundary conditions
for this case (N = 512).

Example 6.3 (Relaxation of elastic membrane on irregular domain). In the third example, we consider a deformable interface
problem which involves an elastic membrane on the irregular domain. On the regular domain, this problem has been already
used by Tu and Peskin [50] to test their immersed boundary method, by LeVeque and Li [26] to test their IIM for Stokes flows,
and by Lee and LeVeque [25] to test the IIM for Navier–Stokes equations. For our problem to be studied, the fluid domain D
considered is irregular as in Fig. 11 where the rigid boundary is a circle with radius Rs ¼ 1. The initial state of membrane (the
solid line in Fig. 11, labeled ‘‘Initial”) is an ellipse with the semi-major and semi-minor axes a ¼ 0:75; b ¼ 0:5, respectively,
and the ellipse is located at the center of the circular domain. The unstretched state of membrane (the dashed line in Fig. 11,
labeled ‘‘Resting”) is a circle with radius r0 ¼ 0:5. The tension coefficient T0 is set to 1 in this example.

−1
−0.5

0
0.5

1

−1

−0.5

0

0.5

1
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

x
y

u

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
Velocity field

x

y

Fig. 10. For Example 6.2. (a) The x-component of the velocity field u, and (b) velocity field u with x ¼ 0 and l ¼ 0:1; f1 ¼ 0 and f2 ¼ �5l.

Table 2
Convergence analysis for the first case of Example 6.2 with x ¼ 1;l ¼ 0:1.

N kEuk1 Order kEpk1 Order Niter CPU (s)

64 2.1032E�03 – 3.6211E�03 – 8 0.94
128 5.1142E�04 2.04 1.0691E�03 1.76 9 3.65
256 1.2697E�04 2.01 3.3134E�04 1.69 10 14.70

−1

−0.5

0

0.5

1

−1
−0.5

0
0.5

1

−1

−0.5

0

0.5

1

x

y

u

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
Velocity field

x

y
Fig. 9. For Example 6.2. (a) The x-component of velocity field u, and (b) the velocity field u with x ¼ 2 and l ¼ 0:1; f1 ¼ 0 and f2 ¼ �5l.

6868 Z. Tan et al. / Journal of Computational Physics 228 (2009) 6855–6881
Due to the restoring force, the ellipse will converge to a circle (the dash-dot line in Fig. 11, labeled ‘‘Equilibrium”) with
radius re ¼

ffiffiffiffiffiffi
ab
p

� 0:61237, which is larger than the unstretched interface but has the same area as the initial ellipse because
of the incompressibility of the enclosed fluid. So the interface is still stretched at the equilibrium state. The prescribed veloc-

Initial

Resting

Equilibrium

sR
D D

Fig. 11. The interface configurations at different states in a circular domain.

Z. Tan et al. / Journal of Computational Physics 228 (2009) 6855–6881 6869
ity at the rigid boundary is set to zero in all the simulations for this example, i.e, uj@D ¼ 0, unless otherwise stated. In this test,
we perform the simulations with a 64 � 64 grid on a computational domain of [�1.2,1.2] � [�1.2,1.2], where 40 control
points and 64 control points are used to represent the interface and rigid boundary.

We begin by computing the velocity and pressure at time t = 0 based on the initial elliptical interface, before the interface
has moved. In Fig. 12(a) and (b), we show the x-component of the velocity field u and velocity field at t = 0, respectively. The
pressure distributions at t = 0 and t = 1 are presented in Fig. 13(a) and in (b), respectively. As expected, from these figures, we
can see that the velocity u is continuous but not smooth, while the pressure p are discontinuous across the interface. Fig. 14
shows this more clearly with the plot of cross section of u along the line y = �0.431 and the plots of cross section of p along
the line y = �0.019 at t = 0 and t = 40. From Figs. 13 and 14(b) and (c), we can see clearly the discontinuities in the pressure
are captured very sharply by our immerse interface method. The evolution of the semi-major and semi-minor axes with time
is shown in Fig. 15. The interface relaxes gradually to the equilibrium state without oscillations and this equilibrium is then
maintained as expected. With our method, the numerical equilibrium agrees very well with the true equilibrium. For exam-
ple, at t = 40, the error between semi-major axis and the true equilibrium position re is only 1.0622e�5, and the error be-
tween semi-minor axis and re is only 9.4631e�6.

We also perform convergence analysis for the flow field. Since the analytic solution is not available, we measure the error
in velocity and pressure using a reference solution that is obtained on the finest 512 � 512 grid. In Table 3, we show the
convergence rate analysis at t = 0, and the expected second-order accuracy for the velocity and near second-order accuracy
for the pressure are observed.
−1
−0.5

0
0.5

1

−1

−0.5

0

0.5

1

−0.4

−0.2

0

0.2

0.4

0.6

y

x

u

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Velocity field

x

y

Fig. 12. For Example 6.3. (a) The x-component of the velocity field u, and (b) velocity field u at t ¼ 0 with l ¼ 0:1 and T0 ¼ 1.

−1
−0.5

0
0.5

1

−1

−0.5

0

0.5

1

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

y
x

p

−1
−0.5

0
0.5

1

−1

−0.5

0

0.5

1

−0.2

−0.1

0

0.1

0.2

0.3

y

x

p

(a) (b)
Fig. 13. For Example 6.3. The pressure distribution at t ¼ 0 (a) and t ¼ 1 (b) with l ¼ 0:1 and T0 ¼ 1.

X

u

-1 -0.5 0 0.5 1

-0.4

-0.2

0

0.2

0.4

The x-component of the velocity field at t=0 and y=-0.431

X

P

-1 -0.5 0 0.5 1
-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2
The pressure profile at t=0 and y=-0.019

X

P

-1 -0.5 0 0.5 1
-0.1

0

0.1

0.2

0.3
The pressure profile at t=40 and y=-0.019

Fig. 14. For Example 6.3. (a) A slice of the u-component velocity along y ¼ �0:431 and the pressure profile along y ¼ �0:019 at (b) t ¼ 0, and (c) t ¼ 40 with
l ¼ 0:1 and T0 ¼ 1.

Timer

xa
nd

r
y

0 1 0 2 0 3 0 4 0

0.5

0.55

0.6

0.65

0.7

0.75

r

x

r

y

Fig. 15.For Example673. The evolution ofrx andry withl¼0:1 andT0¼1. The interface relaxes gradually to the equilibrium state without oscillations.6870Z. Tan et al. / Journal of Computational Physics 228 (2.09) 6855–6881
In the simulation, the conservation of the area is also found to be preserved very well. In Fig. 16(a), we present the plot of
the absolute error in area versus time up to t = 40. In this figure, the maximum absolute error in area is 9.0591e�5 and

Table 3
Convergence analysis for Example 6.4 at t ¼ 0 with l ¼ 0:1 and T0 ¼ 1.

N kEuk1 Order kEpk1 Order

32 2.9905E�03 – 2.5633E�02 –
64 7.0241E�04 2.09 4.8903E�03 2.39
128 1.7929E�04 1.97 1.5582E�03 1.65
256 4.3901E�05 2.03 4.6648E�04 1.74

0 5 10 15 20 25 30 35 40
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1 x 10
−4

Time

A
bs

ol
ut

e
er

ro
r

in
 a

re
a

−2.1 −2 −1.9 −1.8 −1.7 −1.6 −1.5 −1.4 −1.3 −1.2 −1.1
−6

−5.5

−5

−4.5

−4

−3.5

log
10

h

lo
g 10

E

Area conservation

IIM
slope = 2.1
slope = 2.0

Fig. 16. For Example 6.3. (a) Plot of the absolute error in area versus time, and (b) grid refinement analysis for studying the conservation of the area
enclosed by elastic membrane at the steady-state with l ¼ 0:1 and T0 ¼ 1.

Z. Tan et al. / Journal of Computational Physics 228 (2009) 6855–6881 6871
indicates fairly little leakage of about only 0.0077%. In Fig. 16(b), we perform a grid refinement analysis to study the conser-
vation of the area enclosed by the elastic membrane. It could be seen from this figure